36,333 research outputs found

    Improving Resource Efficiency with Partial Resource Muting for Future Wireless Networks

    Full text link
    We propose novel resource allocation algorithms that have the objective of finding a good tradeoff between resource reuse and interference avoidance in wireless networks. To this end, we first study properties of functions that relate the resource budget available to network elements to the optimal utility and to the optimal resource efficiency obtained by solving max-min utility optimization problems. From the asymptotic behavior of these functions, we obtain a transition point that indicates whether a network is operating in an efficient noise-limited regime or in an inefficient interference-limited regime for a given resource budget. For networks operating in the inefficient regime, we propose a novel partial resource muting scheme to improve the efficiency of the resource utilization. The framework is very general. It can be applied not only to the downlink of 4G networks, but also to 5G networks equipped with flexible duplex mechanisms. Numerical results show significant performance gains of the proposed scheme compared to the solution to the max-min utility optimization problem with full frequency reuse.Comment: 8 pages, 9 figures, to appear in WiMob 201

    Ageing and Temperature Influence on Polarization/Depolarization Current Behaviour of Paper Immersed in Natural Ester

    No full text
    Transformers play an important role in providing a reliable and efficient electricity supply and are one of the most critical equipments in electric power transmission and distribution systems. The most commonly used liquid in power transformers is mineral oil due to its low price and good properties. However the performance of mineral oil starts to be limited due to environmental consideration [1]. Natural ester insulating fluid offers fire safety, environment and insulation aging advantages over mineral oil and are found to be suitable for the use in transformer insulation system [1]. However, transformer owners require to assess the status of the cellulose insulation in transformer non-destructively. Polarization/depolarization Current (PDC) measurement [2] is one of the non-destructive techniques which have been used to achieve this aim. At the present, there are few publications about the PDC behaviour of natural ester-paper insulation, though the natural ester becomes more widely used in transformers. In this paper, the influence of ageing and temperature on the PDC behaviour of the paper immersed in natural ester and mineral oil were compared. Results show PDC technique can be used to assess the aging condition of the natural-ester paper insulation. The ageing and temperature have similar influence on the PDC behaviour of the paper immersed in natural ester and in mineral oil. The depolarization current of paper immersed in natural ester is lower than that immersed in mineral oil at the same test temperature. The depolarization current of the paper immersed in natural ester and mineral oil increase with the aging time increased. Therefore, the depolarization current can be used to indicate the aging status of natural ester-paper insulation

    Effect of applied DC voltages and temperatures on space charge behaviour of multi-layer oil-paper insulation

    No full text
    In this paper, space charge in a multi-layer oil-paper insulation system was investigated using the pulsed electroacoustic (PEA) technique. A series of measurements had been carried following subjection of the insulation system to different applied voltages and different temperatures. Charge behaviours in the insulation system were analyzed and the influence of temperature on charge dynamics was discussed. The test results shows that homocharge injection takes place under all the test conditions, the applied DC voltage mainly affects the amount of space charge, while the temperature has greater influence on the distribution and mobility of space charge inside oil-paper samples

    Correlated two-photon scattering in cavity optomechanics

    Full text link
    We present an exact analytical solution of the two-photon scattering in a cavity optomechanical system. This is achieved by solving the quantum dynamics of the total system, including the optomechanical cavity and the cavity-field environment, with the Laplace transform method. The long-time solution reveals detailed physical processes involved as well as the corresponding resonant photon frequencies. We characterize the photon correlation induced in the scattering process by calculating the two-photon joint spectrum of the long-time state. Clear evidence for photon frequency anti-correlation can be observed in the joint spectrum. In addition, we calculate the equal-time second-order correlation function of the cavity photons. The results show that the radiation pressure coupling can induce photon blockade effect, which is strongly modulated by the phonon sideband resonance. In particular, we obtain an explicit expression of optomechanical coupling strength determining these sideband modulation peaks based on the two-photon resonance condition.Comment: 10 pages, 6 figure

    Space Charge Behaviour in Oil-Paper Insulation with Different Aging Condition

    No full text
    Oil-paper insulation system is widely used in power transformers and cables. The dielectric properties of oilpaper insulation play an important role in the reliable operation of power equipment. Oil-paper insulation degrades under a combined stress of thermal (the most important factor), electrical, mechanical, and chemical stresses during routine operations, which has great effect on the dielectric properties of oil-paper insulation [1]. Space charge in oil-paper insulation has a close relation to its electrical performance [1]. In this paper, space charge behaviour of oil-paper insulation sample with three different ageing conditions (aged for 0, 35 and 77 days) was investigated using the pulsed electroacoustic (PEA) technique. The influence of aging on the space charge dynamics behaviour was analysed. Results show that aging has great effect on the space charge dynamics of oil-paper insulation. The homocharge injection takes place under all three aging conditions above. Positive charges tend to accumulate in the sample, and increase with the oil-paper insulation sample deterioration. The time to achieve the maximum injection charge density is 30s, 2min and 10min for oil-paper insulation sample aged for 0, 35 and 77 days, respectively. The maximum charge density injected in the sample aged for 77 days is more than two times larger than the initial sample. In addition, the charge decay speed becomes much slower with the aging time increase. There is an exponential relationship between the total charge amount and the decay time. The decay time constant ? increases with the increasing deterioration condition of the oil-paper insulation sample. The ? value may be used to reflect the aging status of oil-paper insulation

    Anomaly inflow mechanism using Wilson line

    Full text link
    It is shown that the anomaly inflow mechanism can be implemented using Wilson line in odd dimensional gauge theories. An action of Wess-Zumino-Witten (WZW) type can be constructed using Wilson line. The action is understood in the odd dimensional bulk space-time rather than in the even dimensional boundary. This action is not gauge invariant. It gives anomalous gauge variations of the consistent form on boundary space-times. So it can be used to cancel the quantum anomalies localized on boundary space-times. This offers a new way to cancel the gauge anomaly and construct anomaly-free gauge theory in odd dimensional space-time.Comment: 4 pages, 1 figure; title changed; text and figure improved; references adde

    Deformation mechanisms in nanotwinned metal nanopillars

    Get PDF
    Nanotwinned metals are attractive in many applications because they simultaneously demonstrate high strength and high ductility, characteristics that are usually thought to be mutually exclusive. However, most nanotwinned metals are produced in polycrystalline forms and therefore contain randomly oriented twin and grain boundaries making it difficult to determine the origins of their useful mechanical properties. Here, we report the fabrication of arrays of vertically aligned copper nanopillars that contain a very high density of periodic twin boundaries and no grain boundaries or other microstructural features. We use tension experiments, transmission electron microscopy and atomistic simulations to investigate the influence of diameter, twin-boundary spacing and twin-boundary orientation on the mechanical responses of individual nanopillars. We observe a brittle-to-ductile transition in samples with orthogonally oriented twin boundaries as the twin-boundary spacing decreases below a critical value (~3–4 nm for copper). We also find that nanopillars with slanted twin boundaries deform via shear offsets and significant detwinning. The ability to decouple nanotwins from other microstructural features should lead to an improved understanding of the mechanical properties of nanotwinned metals

    Assessing Ageing Condition of Mineral Oil-Paper Insulation by Polarization/Depolarization Current

    No full text
    Accurately assessing the ageing status of oil-paper insulation in transformer is essential and important. Polarization and Depolarization Current (PDC) technique is effective in assessing the condition of oil-paper insulation system. Though the PDC behaviour of mineral oil-paper insulation has been widely investigated, there is no report about how to make the quantitative analysis of mineral oil-paper insulation ageing condition by PDC. The PDC characteristics of mineral oil-paper insulation samples were investigated over the ageing period at 110°C. A new method for assessing the ageing condition of mineral oil-paper insulation by calculating the depolarization charge quantity was proposed. Results show that the depolarization charge quantity of mineral oil-paper insulation sample is very sensitive to its ageing condition. The stable depolarization charge quantity could be used to predict the ageing condition of mineral oil-paper insulation

    The popular family education in China-“Stick parenting”

    Get PDF
    Gracias al progreso del pensamiento humano, la conciencia sobre la protección infantil en la sociedad moderna ha aumentado y, con ello, la prohibición del castigo físico infantil se está convirtiendo en un consenso global. De esta manera, el “stick parenting”, la forma de educación familiar más popular en China, se convierte en un término polémico y comienza a llamar la atención en los círculos educativos de China. En este trabajo se llevará a cabo un análisis de las causas de la prevalencia del “stick parenting” y las influencias psicológicas que este método educativo provoca en los niños.Thanks to the progress of human thought, awareness of child protection in modern society has increased, and that way the prohibition of physical punishment of children is becoming a global consensus. In this way, “stick parenting”, the most popular type of family education in China, has caused a widespread controversy, drawing the attention of the Chinese educational circles. This paper will analyze the reasons that make “stick parenting” so prevailing and the psychological influences it causes in children
    • …
    corecore